УказательРазделыОбозначенияАвторО проекте


Статус документа: черновик.


§

Для понимания материалов этого раздела крайне желательно просмотреть материалы из раздела ☞ ТЕОРИЯ ВЕРОЯТНОСТЕЙ.


Теория информации по Шеннону

Энтропия

Пусть случайное событие заключается в осуществлении одного из несовместимых состояний S_{1},\dots,S_n, вероятности появления которых даются таблицей

\begin{array}{l|l|l|l} S_1 & S_2 & \dots & S_n \\ \hline P_1 & P_2 & \dots & P_n \end{array} \quad при \quad P_1+P_2+\dots+P_n=1.

Эти вероятности известны, но это — все, что нам известно относительно того какое состояние осуществится. Можно ли найти «меру» насколько велик выбор из такого набора состояний и сколь неопределено для нас событие?

Если наше событие (опыт) состоит в определении цвета первой встретившейся нам вороны, то мы можем почти с полной уверенностью рассчитывать, что этот цвет будет черным. Несколько менее определено событие (опыт), состоящее в выяснении того, окажется ли первый встреченный нами человек левшой или нет — здесь тоже предсказать результаты опыта можно, почти не колеблясь, но опасения в относительно правильности этого предсказания будут более обоснованны, чем в предыдущем случае. Значительно труднее предсказать заранее пол первого встретившегося нам на улице человека. Но и этот опыт имеет относительно небольшую степень неопределенности по сравнению, например с попыткой определить победителя в чемпионате страны по футболу с участием двадцати совершенно незнакомых нам команд.

Для практики важно уметь численно оценивать степень неопределенности самых разнообразных случайных событий (опытов), чтобы иметь возможность сравнивать их с этой стороны. Искомая численная характеристика должна быть функцией числа n_{} возможных состояний. Некоторые свойства этой функции f(n) определяются соображениями здравого смысла. При n_{}=1 событие вообще не является случайным, т.е. следует положить f(1)=0. При возрастании числа n_{} возможных состояний эта функция должна возрастать поскольку увеличение количества возможных исходов опыта увеличивает неопределенность в предсказании его результатов.

Идем далее: рассмотрим два независимых события A_{} и B_{}. Пусть событие A_{} имеет k_{} равновероятных исходов, а событие B_{} имеет \ell_{} равновероятных исходов. Рассмотрим событие, состоящее в произведении (совместном осуществлении) событий A_{} и B_{}, обозначим это событие AB_{}. Например, если событие A_{} заключается в появлении масти карты — бубновой , червовой , трефовой или пиковой — при выборе ее из колоды в 36_{} карт, а событие B_{} заключается в появлении достоинства карты — шестерки,семерки, восьмерки, девятки, десятки, валета, дамы, короля или туза — при выборе ее из той же колоды, то событие AB_{} заключается в появлении конкретной карты колоды. Очевидно, что неопределенность события AB_{} больше неопределенности события A_{}, так как к неопределенности A_{} добавляется неопределенность события B_{}. Естественно потребовать, чтобы мера неопределенности события AB_{} была равна сумме неопределенностей, характеризующих события A_{} и B_{}. Это требование обеспечивается следующим следующим свойством функции f_{}:

f(k\ell)=f(k)+f(\ell) \ ,

имеющего тот смысл, что число k\ell как раз и дает число возможных исходов события AB_{}.

Последнее равенство наталкивает на мысль принять за меру неопределенности опыта, имеющего n_{} равновероятных исходов, число \log n. Можно доказать, что логарифмическая функция является единственной непрерывной функцией аргумента n\in \mathbb R, удовлетворяющей такому функциональному уравнению. При этом выбор основания системы логарифмов несуществен, так как, в силу известной формулы \log_b n = \log_b a \cdot \log_a n, переход от одной системы логарифмов к другой сводится лишь к умножению функции f(n)=\log n на постоянный множитель \log_b a, т.е. равносилен простому изменению единицы измерения степени неопределенности.

§

Как правило, в дальнейшем будем пользоваться логарифмом по основанию 2_{}; такой выбор в одном из последующих пунктов будет подкреплен некоторыми дополнительными «бонусами». В ближайших же пунктах будем просто писать \log без указания основания.

Таблица вероятностей события, имеющего n_{} равновероятных состояний, имеет вид

\begin{array}{l|l|l|l} S_1 & S_2 & \dots & S_n \\ \hline 1/n & 1/n & \dots & 1/n \end{array}

Так как общая неопределенность события по нашему условию равна \log n, то можно считать, что каждое в отдельности состояние вносит неопределенность равную \frac{1}{n} \log n = - \frac{1}{n} \log \frac{1}{n}. Но тогда естественно считать, что в событие, таблица вероятностей состояний которого имеет вид

\begin{array}{l|l|l} S_1 & S_2 & S_3 \\ \hline 1/2 & 1/3 & 1/6 \end{array}

состояние S_1 вносит неопределенность, равную \left( - \frac{1}{2} \log \frac{1}{2} \right), состояние S_2 — неопределенность, равную \left( - \frac{1}{3} \log \frac{1}{3} \right), а состояние S_3 — неопределенность, равную \left( - \frac{1}{6} \log \frac{1}{6} \right), так что суммарная неопределенность события равна

- \frac{1}{2} \log \frac{1}{2} - \frac{1}{3} \log \frac{1}{3} - \frac{1}{6} \log \frac{1}{6} \ .

Аналогично этому можно положить, что для события A_{} с таблицей вероятностей

\begin{array}{l|l|l|l} S_1 & S_2 & \dots & S_n \\ \hline P_1 & P_2 & \dots & P_n \end{array} \quad при \quad P_1+P_2+\dots+P_n=1

мера его неопределенности равна

-\sum_{j=1}^n P_j \log P_j = - P_1 \log P_1 - P_2 \log P_2 - \dots - P_n \log P_n \ .

Это число будем называть энтропией события A_{} и обозначать либо H(A) либо H(P_1,P_2,\dots,P_n). Величина энтропии зависит от выбранного основания логарифмической функции; в случае основания 2_{} единицу измерения энтропии называют «бит», в случае основания 10_{} — «дит», в случае основания e=2.718281828459045\dots — «нат».

§

В случае, когда P_j=0 при каком-то значении j_{}, полагают P_j \log P_j=0 (на основании известного из мат.анализа факта \displaystyle \lim_{x\to +0} x \log x = 0).

Можно проверить, что функция H(P_1,P_2,\dots,P_n) симметрична относительно своих переменных; этот факт имеет тот смысл, что мера неопределенности события не зависит от способа нумерации его возможных состояний. Кроме того эта функция обладает следующими свойствами.

1. H_{} непрерывна по каждой своей переменной;

2. Если все вероятности одинаковы: P_1=1/n,P_2=1/n,\dots,P_n=1/n, то H_{} монотонно возрастающая функцией по n_{}:

H \bigg(\underbrace{\frac{1}{n},\dots,\frac{1}{n}}_n \bigg)<H\bigg(\underbrace{\frac{1}{n+1},\frac{1}{n+1},\dots,\frac{1}{n+1}}_{n+1}\bigg)

(при равновероятности состояний, неопределенность события тем больше, чем больше количество этих состояний).

3. При распадении какого-то события на два последовательных, величина H_{} должна вычисляться как взвешенная сумма составляющих значений H_{}. Иллюстрирую на примере, который беру у Шеннона, но при этом излагаю в русском фольклорном стиле.

П

Пример. Предположим, что найденная Иваном-царевичем лягушка в течение минуты либо

  • превращается в бабу-Ягу с вероятностью 1/3;
  • превращается в красавицу Василису Премудрую с вероятностью 1/6;
  • остается лягушкой, и вероятность этого события равна 1/2.

Мера неопределенности этого события H(1/3,1/6,1/2). Теперь посчитаем меру неопределенности по-другому, объединив сначала первые два состояния в одно. Лягушка в течение минуты

  • превращается в женщину с вероятностью 1/2;
  • остается лягушкой с вероятностью 1/2.

Кроме того известно, что если лягушка точно превратилась в женщину, то ( условная ) вероятность того, что она стала бабой-Ягой равна 2/3, и, следовательно, вероятность появления Василисы Премудрой оказывается равной 1/3. В результате получаем два значения для функции H_{}, именно H(1/2,1/2 ) и H(2/3 , 1/3 ). Как должны быть связаны эти новые величины со старой — с H(1/3,1/6,1/2)? Конечный результат у обоих событий одинаков, во втором случае мы просто искусственно «вставили» одно промежуточное событие. Так вот, имеет место равенство:

H(1/3,1/6,1/2)=H(1/2,1/2 )+\frac{1}{2} H(2/3 , 1/3 ) \ ,

здесь весовой множитель 1/2 в составе второго слагаемого возникает из-за того, что ситуация второго события происходит только в половине случаев.

Формализуем: утверждается, что функция H_{} удовлетворяет условию

H(P_1,P_2,P_3,\dots,P_n)=H(P_1+P_2,P_3,\dots,P_n)+(P_1+P_2)H\left(\frac{P_1}{P_1+P_2}, \frac{P_2}{P_1+P_2} \right) \ ;

а уж из последнего можно вывести и еще более общее:

H(P_1,\dots,P_n)=H(P_1+\dots+P_m,P_{m+1},\dots,P_n)+
+(P_1+\dots+P_m)H\left(\frac{P_1}{P_1+\dots+P_m}, \frac{P_2}{P_1+\dots+P_m},\dots, \frac{P_m}{P_1+\dots+P_m} \right)

при \forall m\in \{2,\dots,n-1\}.

Перечисленные свойства 1 - 3 оказываются настолько «жесткими», что будучи формально наложенными на произвольную функцию H_{}, задают ее, фактически, однозначно:

Т

Теорема [Шеннон]. Единственной функцией, удовлетворяющей условиям 1 - 3 , является функция

H=- K \sum_{j=1}^n P_j \log P_j \ .

Здесь K_{}положительная константа, а логарифм берется по произвольному основанию большему 1_{}.

§

Можно сказать, что свойства 1 - 3 являются определяющими свойствами энтропии — по аналогии с определяющими свойствами определителя как функции столбцов (или строк) матрицы.

После приведения этой формулировки, Шеннон пишет:

Эта теорема, равно как и необходимые для ее доказательства условия, не являются необходимыми для собственно излагаемой теории. Она приведена, главным образом, для придания правдоподобия1) некоторым последующим определениям. Действительное же обоснование этих определений, однако, остается за их применениями.
§

Образно говоря, следующее определение энтропии как меры неопределенности само в себе имеет некоторую меру неопределенности ^_^

И

Происхождение слова «энтропия» ☞ ЗДЕСЬ.

§

В дальнейшем, если не оговаривается особо, будем считать энтропию при логарифмической функции, взятой по основанию 2_{}, и этот индекс при написании будем часто опускать.

П

Пример. Графики энтропии для n_{}=2

и для n_{}=3:

§

Формула для энтропии была получена в XIX веке Больцманом в его работах по статистической физике. Больцман показал, что если в газе, состоящем из большого числа молекул, вероятности состояний отдельных молекул равны P_1,\dots,P_n, то энтропия системы определяется соотношением

H=- c \sum_{j=1}^n P_j \ln P_j \ ,

где c_{} — некоторая константа. Можно считать, что энтропия системы является мерой неопределенности состояния молекул, составляющих эту систему. Эта интерпретация позволяет понять, почему Шеннон использовал ту же формулу в теории информации. Информация — это убыль неопределенности. До осуществления случайного события мы пребываем в полной неопределенности относительно того, какое из своих состояний оно может принять. После осуществления события, неопределенность устраняется. В одном из следующих пунктов мы покажем, что величина энтропии H_{} может быть интерпретирована как количество информации, содержащейся в событии.

Свойства энтропии

Проанализируем теперь формулу для энтропии.

Т

Теорема 1. H=0 тогда и только тогда, когда одна из вероятностей равна 1_{} при всех остальных, равных нулю (мера недостоверности наверняка осуществимого события равна 0_{}).

Т

Теорема 2. При фиксированном n_{} максимум функции H_{} достигается при всех вероятностях одинаковых:

\max_{P_1+\dots+P_n=1} H(P_1,\dots,P_n)=H\left(\frac{1}{n},\dots,\frac{1}{n} \right) = \log n

(при равновероятности состояний предсказание об осуществимости какого-то конкретного из них максимально недостоверно).

Т

Теорема 3. Пусть случайные события A_{} и B_{} независимы. Тогда энтропия произведения (совместного осуществления) событий A \cdot B равна сумме энтропий перемножаемых событий:

H ( A \cdot B) = H(A) + H(B) \ .

Доказательство. Пусть случайное событие A_{} может находиться в состояниях S_1,\dots,S_n с вероятностями, заданными таблицей

\begin{array}{l|l|l|l} S_1 & S_2 & \dots & S_n \\ \hline P_1 & P_2 & \dots & P_n \end{array} \quad при \quad P_1+P_2+\dots+P_n=1,

а случайная величина B_{} может находиться в состояниях U_1,\dots,U_m с вероятностями, заданными таблицей

\begin{array}{l|l|l|l} U_1 & U_2 & \dots & U_m \\ \hline Q_1 & Q_2 & \dots & Q_m \end{array} \quad при \quad Q_1+Q_2+\dots+Q_m=1.

Тогда случайная величина A\cdot B может находиться в состояниях

\{ S_jU_k \mid \quad j\in \{1,\dots,n\}, k\in \{1,\dots,m \} \} ;

здесь S_jU_k означает такое состояние «сложного» события, которое заключается в одновременном выполнении двух условий: событие A_{} находится в состоянии S_j, a событие B_{} — в состоянии U_k. Поскольку, по предположению, события A_{} и B_{} независимы, то вероятность такого состояния равна P_jQ_k. Тогда

H(A\cdot B)= \sum_{j=1}^n \sum_{k=1}^{m} P_jQ_k \log \frac{1}{P_jQ_k}= \sum_{j=1}^n \sum_{k=1}^{m} P_jQ_k \left( \log \frac{1}{P_j} + \log \frac{1}{Q_k}\right)=
= \underbrace{\left( \sum_{k=1}^{m} Q_k \right)}_{=1} \sum_{j=1}^n P_j \log \frac{1}{P_j} + \underbrace{\left( \sum_{j=1}^{n} P_j \right)}_{=1} \sum_{k=1}^{m} Q_k\log \frac{1}{Q_k}= H(A) + H(B) \ .

=>

Для любых случайных событий A_{} и B_{} энтропия их произведения (совместного появления) A \cdot B не превосходит суммы энтропий перемножаемых событий:

H ( A \cdot B) \le H(A) + H(B) \ .

Условная энтропия

Предположим теперь, что события A_{} и B_{} не являются независимыми. Выясним, чему равна энтропия произведения этих событий. Общая формула для энтропии дает

H(AB)=-\sum_{j=1}^n \sum_{k=1}^{m} P(S_jU_k) \log P(S_jU_k) \ .

В общем случае уже нельзя заменить вероятность P(S_jU_k) на произведение соответствующих вероятностей; в соответствии с теоремой из пункта ☞ УСЛОВНЫЕ ВЕРОЯТНОСТИ имеет место равенство

P(S_jU_k)=P(S_j)P_{S_j}(U_k)=P_j P_{S_j}(U_k) \ ,

где P_{S_j}(U_k) означает условную вероятность состояния U_k при условии нахождения события A_{} в состоянии S_j. Каждое слагаемое под знаком суммы в выражении для энтропии представляется тогда в виде

P(S_jU_k) \log P(S_jU_k)=P_j P_{S_j}(U_k) \left( \log P_j + \log P_{S_j}(U_k) \right) \ .

Тогда

H(AB)=-\sum_{j=1}^n P_j \log P_j \left( \sum_{k=1}^{m} P_{S_j}(U_k) \right)- \sum_{j=1}^n P_j \left( \sum_{k=1}^m P_{S_j}(U_k) \log P_{S_j}(U_k) \right) \ .

Сумма

\sum_{k=1}^{m} P_{S_j}(U_k)=P_{S_j}(U_1+U_2+\dots+U_k)=1 \ ,

поскольку событие U_1+U_2+\dots+U_k — достоверное (какое-то из состояний U_1,U_2,\dots,U_k событие B_{} принимает). Поэтому первое слагаемое в правой части формулы для H(AB) равно просто H(A_{}). Во втором слагаемом сумма

- \sum_{k=1}^m P_{S_j}(U_k) \log P_{S_j}(U_k)

представляет собой энтропию события B_{} при условии, что событие A_{} оказалось в состоянии S_{j}. Эта энтропия называется условной энтропией события B_{} при условии нахождения события A_{} в состоянии S_{j} (или частной условной энтропией) и обозначается H_{S_j}(B) или H(B \mid S_j). Тогда сумму

\sum_{j=1}^n P_j H_{S_j}(B)

естественно считать средней условной энтропией события B_{} при условии выполнения события A_{}; эту величину называют условной энтропией B_{} при условии выполнения A_{} и обозначается H_A(B) или H(B \mid A).

Перепишем теперь все эти определения с использованием матричного формализма. Если обозначить

P_{jk}=P_{S_j}(U_k) \ ,

т.е. условную вероятность состояния U_k при условии S_{j}, то из этих вероятностей можно составить матрицу

\mathfrak P=\left[ P_{jk} \right]_{j=1,\dots,n \atop k=1,\dots,m}

по следующей схеме

\begin{array}{c} \\ S_1 \\ \dots \\ S_n \end{array} \begin{array}{c} \begin{array}{llll} U_1 & U_2 & \dots & U_m \end{array} \\ \left( \begin{array}{llll} P_{11} & P_{12} & \dots & P_{1m} \\ \dots &&& \dots \\ P_{n1} & P_{n2} & \dots & P_{nm} \end{array} \right) \ . \end{array}

В одном из следующих ПУНКТОВ эта матрица получит специальное название и обозначение, а пока подчеркну только, что элементы этой матрицы неотрицательны и сумма их в каждой строке равна 1_{}. Введем в рассмотрение новую матрицу:

\tilde \mathfrak P = \left( \begin{array}{llll} P_{11} \log P_{11} & P_{12} \log P_{12} & \dots & P_{1m} \log P_{1m} \\ \dots &&& \dots \\ P_{n1} \log P_{n1} & P_{n2} \log P_{n2} & \dots & P_{nm} \log P_{nm} \end{array} \right) \ .

Тогда условная энтропия H_{S_j}(B) равна сумме элементов j_{}-й строки этой матрицы. С использованием операции умножения матриц условные энтропии можно собрать в один столбец:

\left( \begin{array}{c} H_{S_1}(B) \\ \vdots \\ H_{S_n}(B) \end{array} \right)= -\tilde \mathfrak P \left( \begin{array}{c} 1 \\ \vdots \\ 1 \end{array} \right) \ .

Тогда условная энтропия B_{} при условии выполнения A_{} вычисляется по формуле

H_A(B) = \sum_{j=1}^n P_j H_{S_j}(B) = - (P_1,\dots,P_n) \tilde \mathfrak P \left( \begin{array}{c} 1 \\ \vdots \\ 1 \end{array} \right) \ .
Т

Теорема 4. Для энтропии произведения случайных событий A_{} и B_{} имеет место правило сложения энтропий:

H(AB)=H(A)+ H_A(B) \ .

Проиллюстрируем результат теоремы на примере, который подробно будем разбирать во всех последующих пунктах. Источник приведенных в нем данных ☞ ЗДЕСЬ.

П

Пример. Пусть случайный процесс заключается в ежесекундном появлении на экране монитора одной буквы русского алфавита в соответствии с приведенными ниже вероятностями

и м о т пробел
P_{} 0.219 0.104 0.295 0.148 0.234

Таким образом, случайным событием A_{} является появление какой-то из указанных букв и

H(A) = - \sum_{j=1}^5 P_j \log_2 P_j \approx 2.237 \quad бит .

Теперь предположим, что каждое следующее событие B_{} — появление на экране буквы — зависит от результата предыдущего по времени (но только от одного предыдущего). Условные вероятности, полученные в результате натурных экспериментов, соберем в матрицу

\mathfrak P= \left[ P_{jk} \right]_{j,k=1}^5= \left( \begin{array}{ccccc} 0.170 & 0.130 & 0.144 & 0.065 & 0.491 \\ 0.259 & 0.029 & 0.231 & 0.111 & 0.370 \\ 0.204 & 0.116 & 0.268 & 0.206 & 0.206 \\ 0.161 & 0.077 & 0.523 & 0.052 & 0.187 \\ 0.304 & 0.113 & 0.356 & 0.227 & 0 \end{array} \right) \ .

Так, значение P_{3,2}=0.116 означает, что если в данный момент времени на экране появилась буква о, то в следующий момент времени буква м появится примерно в 116 случаях из 1000. Выражение для матрицы \tilde \mathfrak P приведено в одном из последующих ☞ ПУНКТОВ. С ее помощью вычисляем условную энтропию события B_{} при условии события A_{}:

H_A(B)= - (P_1,P_2,P_3,P_4,P_5) \tilde \mathfrak P \left( \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} \right) \approx 2.036 \quad бит .

Теперь вычислим энтропию произведения событий A_{} и B_{}, то есть события, заключающемся в последовательном появлении двух букв. Для этого нам потребуются вероятности появления каждой пары букв, приведенные ☞ ВСЁ ТАМ ЖЕ.

ии им ио ит и_ ми мм мо мт м_ ои ом оо от о_ ти тм то тт т_ _o _
\hat P 0.037 0.028 0.031 0.014 0.108 0.027 0.003 0.024 0.011 0.038 0.060 0.034 0.079 0.061 0.061 0.024 0.011 0.077 0.008 0.028 0.071 0.027 0.084 0.053 0.000

Имеем:

H(AB)=- \sum_{j=1}^{25} \hat P_j \log_2 \hat P_j \approx 4.268 \quad бит .

Проверка: H(A)+H_A(B)\approx 4.273 бит.

§

Пока мы только лишь формально осваиваем введенный математический аппарат, оставляя обсуждение лежащего под ним здравого смысла до следующих пунктов.

Т

Теорема 5. Для условной энтропии выполняются неравенства

0 \le H_A(B) \le H(B) \ .

Это утверждение хорошо согласуется со смыслом энтропии как меры неопределенности: предварительное осуществление события A_{} может лишь уменьшить степень неопределенности события B_{}, но никак не может ее увеличить. Здесь необходимо отметить, что частная условная энтропия H_{S_j}(B) может быть и больше H(B), но усреднение всего набора частных энтропий по вероятностям всё-таки приводит к ограничению типа \le.

Поскольку события AB_{} и BA_{} одинаковы, то

H(AB)=H(A)+ H_A(B) =H(B)+H_B(A) \ .

Из последнего равенства можно определить и условную энтропию события A_{} при условии осуществления события B_{}:

H_B(A)=H(B)-H(A)-H_A(B) \ .
П

Пример. Пусть события A_{} и B_{} заключаются в извлечении одного шара из ящика, содержащего m_{} черных и n-m белых шаров. Чему равны энтропии H(A), H(B), H_A(B), H_B(A)?

Понятие об информации

Рассмотрим величину H(B), характеризующую степень неопределенности события B_{}. Равенство этой величины нулю означает, что состояние события B_{} заранее известно; большее или меньшее значение числа H(B) отвечает большей или меньшей неопределенности события. Какое-либо состояние события A_{}, предшествующее событию B_{}, может ограничить количество возможных состояний для события B_{} и тем самым уменьшить степень его неопределенности. Для того чтобы состояние события A_{} могло сказаться на последующем событии B_{}, необходимо, чтобы это состояние не было известно заранее; поэтому A_{} можно рассматривать как вспомогательное событие, также имеющее несколько допустимых состояний. Тот факт, что осуществление A_{} уменьшает степень неопределенности B_{}, находит свое отражение в том, что условная энтропия H_A(B) события B_{} при условии выполнения события A_{} оказывается не больше первоначальной энтропии H(B) того же события. При этом, если событие B_{} не зависит от A_{}, то H_A(B)=H(B); если же состояние события A_{} полностью предопределяет событие B_{}, то H_A(B)=0. Таким образом, разность

I(A,B)=H(B)-H_A(B)

указывает, насколько осуществление события A_{} уменьшает неопределенность B_{}, т.е. сколько нового мы узнаем о событии B_{}, осуществив событие A_{}. Эту разность называют количеством информации относительно события B_{}, содержащимся в событии A_{}.

Введенное таким образом определение можно «развернуть», определив энтропию H(B) события как информацию о событии B_{}, содержащуюся в самом этом событии (поскольку осуществление события B_{} полностью определяет его исход и, следовательно, H_B(B)=0), или как наибольшую информацию относительно B_{}, какую только можно иметь. Иными словами, энтропия H(B) события B_{} равна той информации, которую мы получаем при осуществлении этого события, т.е. средней информации, содержащейся в состояниях U_1,\dots, U_m события B_{}. Чем больше неопределенность какого-то события, тем бóльшую информацию дает определение его состояния.

Следует также иметь в виду, что информация относительно события B_{}, содержащаяся в событии A_{}, по определению представляет собой среднее значение (математическое ожидание) случайной величины \{ H(B)-H_{S_j}(B) \}_{j=1}^n, связанной с отдельными состояниями \{ S_{j} \}_{j=1}^n события A_{}; поэтому ее можно назвать средней информацией относительно B_{}, содержащейся в A_{}. Часто может случиться, что при определении состояния какого-либо события B_{} мы можем по-разному выбирать вспомогательные состояния (опыты, измерения, наблюдения) события A_{}; так, например, при нахождении самого тяжелого груза из заданного набора грузов мы можем в разном порядке сравнивать отдельные грузы.

Информационная избыточность

Задача. Имея сообщение, записанное символами некоторого алфавита \{S_1,\dots,S_n\}, закодировать его наиболее выгодным способом. Здесь кодирование понимается как процесс перехода от исходного алфавита к некоторому новому \{U_1,\dots,U_m\}, в котором каждому символу S_{j} однозначно сопоставляется последовательность символов (U_{j_1},\dots, U_{j_k}). Будем считать кодирование тем более выгодным, чем меньше элементарных сигналов приходится затратить на передачу данного сообщения.

Если считать, что коммуникация каждого из символов нового алфавита «стоит» одинакового количества ресурсов (энергии, времени), то наиболее выгодный код позволит сэкономить эти ресурсы.

П

Пример. Пусть n=10, m=2, т.е., к примеру, исходный алфавит, состоящий из цифр 0,1,\dots, 9, мы кодируем двоичным кодом. Кодовая таблица

\begin{array}{c|c|c|c|c|c|c|c|c|c} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline 0000 & 0001 & 0010 & 0011 & 0100 & 0101 & 0110 & 0111 & 1000 & 1001 \end{array}

фактически соответствует переводу десятичных чисел в двоичную систему счисления. С одним только различием: каждый блок кода состоит из 4-х цифр, разрядов2) , т.е. код является равномерным. Требование равномерности понятно: оно позволяет получателю закодированного сообщения однозначно выделить блоки, соответствующие закодированным символам. Заметим, что вопрос о количестве этих разрядов равносилен задаче о том сколько вопросов, имеющих ответы «да» или «нет» надо задать, чтобы отгадать задуманное целое число среди 0,1,\dots, 9.

Рассмотрим теперь вопрос о выгодности (т.е. экономности) построенного кода. Каждая цифра числового сообщения, записанного в привычной десятичной системе счисления, может принимать одно из десяти значений, т.е. может содержать информацию, равную, самое большее, \log_2 10 \approx 3.32 бит. Следовательно, сообщение, состоящее из N_{} десятичных цифр, может содержать, самое большее, N \log_2 10 \approx 3.32 N бит. Каждый разряд закодированного сообщения может принимать одно из двух значений, т.е. может содержать информацию, равную, самое большее \log_2 2=1 биту. Но при использовании рассмотренного нами двоичного кода мы затрачиваем на передачу одного символа алфавита 4_{} разряда, а на передачу сообщения из N_{} символов алфавита — 4\, N разрядов. Однако с помощью 4\, N двоичных разрядов можно было бы передать информацию, равную 4\, N бит. Разность 4\,N-3.32\, N=0.68\, N отражает величину неэкономичности нашего кода. Нетрудно также объяснить, почему предложенный код не будет наиболее экономичным: в нем значения 0_{} и 1_{} не являются равновероятными: если в кодируемом сообщении все цифры 0,1,\dots, 9 равновероятны, то в закодированном сообщении 0_{} будет встречаться в 25/15=5/3 раз чаще, чем 1_{}. Между тем для того, чтобы последовательность из определенного количества символов 0_{} и 1_{} содержала наибольшую информацию, требуется, чтобы все цифры этой последовательности принимали оба значения с одинаковой вероятностью (и были взаимно независимы).

Легко понять, как можно построить более выгодный двоичный код. Разобьем наше сообщение на последовательные пары цифр и будем переводить в двоичную систему счисления не отдельно каждую цифру, к каждое двузначное десятичное число разбиения. Число двоичных разрядов кодовых блоков, требуемое для записи всех двузначных чисел 00,01,\dots,99 равно 7_{}:

\begin{array}{c|c|c|c} 0 & 1 & \dots & 99 \\ \hline 0000000 & 0000001 & \dots & 1100011 \end{array}

При такой схеме кодирования на два символа исходного алфавита тратится 7_{} бит, а не 8_{} — как в первой схеме, т.е. для передачи числа из N_{} десятичных цифр надо передать 7\, (N+1)/2 \approx 3.5 N двоичных цифр.

Еще выгоднее было бы разбить передаваемое число на триплеты — блоки из трех цифр. В этом случае «стоимость» кодирования понижается до \approx 3.33 N бит. Выгода от перехода к разбиению сообщения на еще более крупные блоки практически оказывается уже совсем небольшой. При переходе от триплетов к квадруплетам (блокам из четырех цифр) экономность кодирования даже уменьшается: на передачу последних требуются 14-тиразрядные двоичные блоки. Тем не менее, применяя разбиение кодируемого N_{}-значного числа на еще более крупные блоки, мы можем еще более «сжать» получаемый двоичный, подойдя максимально близко к значению N \log_2 10.

Эта последняя граница может быть получена и из других соображений — без использования понятия информации. Количество всевозможных N_{}-буквенных слов, составленных из букв алфавита \{ S_1,\dots,S_n \}, равно n^N, количество всевозможных k_{}-разрядных двоичных блоков равно 2^k. Для однозначности кодирования необходимо, чтобы 2^k \ge n^N.

Способ кодирования k_{}-разрядными двоичными блоками фактически заключается в том, что мы разбиваем множество всевозможных k_{}-значных чисел на две равные части и числам из одной части сопоставляем первую разрядную цифру равную 0_{}, а числам из второй части — равную 1_{}. Далее, каждая из половинок множества снова разбивается на две равные части, каждой из которых приписывается 0_{} или 1_{}.

Т

Теорема [Хартли]. Если в заданном множестве \mathbb S, состоящем из \mathfrak N элементов:

\operatorname{Card}(\mathbb S) = \mathfrak N

выделен какой-то элемент U_{}, о котором заранее известно, лишь что U \in \mathbb S, то, для того, чтобы найти U_{} необходимо получить информацию, равную \log_2 \mathfrak N бит.

На первый взгляд кажется, что если число букв в исходном алфавите равно n_{}, а в кодирующем алфавите равно m_{}, то число \log_m n характеризует наиболее экономичный код. Однако это утверждение ошибочно. Разумеется, верно, что текст из N_{} букв n_{}-буквенного алфавита может содержать информацию, самое большее равную N \log_2 n бит, но в действительности такой текст, если только он является осмысленным, никогда такой информации не содержит. Это ясно из свойств энтропии: каждая буква текста может содержать наибольшую информацию \log_2 n бит лишь в том случае, когда все буквы алфавита будут встречаться одинаково часто. Известно, однако, что частоты встречаемости букв o или е во много раз больше частот встречаемости букв ф или щ.


Частота встречаемости букв в обычном (неспециальном) тексте (без учета пробелов) [2]:

a б в г д е,ё ж з и й к л м н о п р
0.075 0.017 0.046 0.016 0.030 0.087 0.009 0.018 0.075 0.012 0.034 0.042 0.031 0.065 0.110 0.028 0.048
с т у ф х ц ч ш щ ъ,ь ы э ю я
0.055 0.065 0.025 0.002 0.011 0.005 0.015 0.007 0.004 0.017 0.019 0.003 0.007 0.022

Энтропия достигает своего максимума, если все символы алфавита \{S_1,\dots,S_n\} независимы и генерируются источником с одинаковой вероятностью. Можно сказать, что в равновероятном алфавите все символы несут максимальную информационную нагрузку. Если же алфавит неравновероятен, то некоторые его символы будут иметь меньшую информационную нагрузку, чем другие. Так, если считать, что в русском алфавите 31_{} буква (отождествляем е и ё, а также ь и ъ) и все они равновероятны, то

H_0= - \sum_{j=1}^{31} 1/31 \log_2 (1/31) = \log_2 31 \approx 4.954 бит \ .

Если учитывать частоты букв в соответствии с приведенной таблицей, то получим:

H_1= - \sum_{j=1}^{31} P_j \log_2 (P_j) \approx 4.460 бит \ ,

т.е. средняя информация, приходящаяся на одну букву русского текста, заметно понижается.

Аналогичные результаты справедливы и для других языков. Если латинский алфавит содержит 26_{} букв и, следовательно, H_0 = \log_2 26 \approx 4.700 бит, то значения H_{1} для основных европейских языков приведены в таблице

английский французский немецкий
H_{1} 4.126 3.986 4.096

Однако, даже с учетом частот появления букв в тексте языков, мы все равно получим значение средней удельной информации на единицу текста, превосходящую фактическое значение этой величины. В самом деле, для русского алфавита, например, информация в 4.460 бит на одну букву получилась бы, если бы каждая буква текста определялась с помощью извлечения карточки из ящика с перемешанными 1000 карточками, среди которых на 110 карточках написана буква о, на 87 карточках — буква е, и т.д., на 2_{} карточках — буква ф. Энтропия каждого такого события (извлечения карточки) A_1 примерно равна 4.460 бит; если [A_1,A_2,\dots,A_N] обозначают N_{} последовательных событий3), то

H([A_1, A_2, \dots , A_N])= \sum_{\ell=1}^N H(A_{\ell}) \approx N \cdot 4.460 бит \ .

Однако, появление каждой буквы текста на ``естественном'' языке не является независимым событием: вероятности появления каждой буквы зависят от предыдущих букв. Так, например, в русском языке после появления гласной буквы, существенно увеличивается вероятность появления согласной; если последняя появившаяся буква ч, то следующей уже никак не может быть ы, ю, или я, а весьма вероятно появление одной из букв и, е или т. Аналогичные закономерности имеются и во всех других языках. Поэтому, если [A_1,A_2] — сложное событие, состоящее в последовательном появлении двух, то информация, содержащаяся в этом событии, равна

H([A_1,A_2])=H(A_1)+H_{A_1}(A_2) \le H(A_1)+H(A_2) \ .

Среднюю информацию на одну букву следует вычислять как условную энтропию:

H_2=H_{A_1}(A_2)=-\sum_{j,\ell=1}^n P([S_j,S_{\ell}]) \log_2 P_{j\ell} \ ,

где n_{} — число букв алфавита, P_{j\ell}= P_{S_j}(S_{\ell}) — условная вероятность появления буквы S_{\ell}, если известно, что непосредственно перед ней стоит буква S_{j}, а P([S_j,S_{\ell}]) — вероятность появления двухбуквенного сочетания (диграммы) [S_j,S_{\ell}].

§

Как правило, P([S_j,S_{\ell}]) \ne P([S_{\ell},S_j]); сочетание ый встречается значительно чаще йы4).

Можно переписать последнюю формулу в матричном виде с использованием условных вероятностей. По правилу умножения вероятностей:

P([S_j,S_{\ell}])=P(S_j)P_{S_j}(S_{\ell})=P_j P_{j\ell} \ .

Составим из условных вероятностей матрицу:

\mathfrak P =\left[ P_{jk} \right]_{j,k=1}^n

— она называется матрицей условных (или переходных) вероятностей. На ее основе построим матрицу

\tilde \mathfrak P= \left[P_{jk} \log P_{jk} \right]_{j,k=1}^n \left( \begin{array}{llll} P_{11} \log P_{11} & P_{12} \log P_{12} & \dots & P_{1n} \log P_{1n} \\ \dots &&& \dots \\ P_{n1} \log P_{n1} & P_{n2} \log P_{n2} & \dots & P_{nn} \log P_{nn} \end{array} \right) \ ;

В нашем случае — в отличие от общего случая пункта ☞ УСЛОВНАЯ ЭНТРОПИЯ — матрицы \mathfrak P и \tilde \mathfrak P будут квадратными. В полном соответствии с пунктом ☞ УСЛОВНАЯ ЭНТРОПИЯ можем записать:

H_2= - (P_1,\dots,P_n) \tilde \mathfrak P \left( \begin{array}{c} 1 \\ \vdots \\ 1 \end{array} \right) \ .
П

Пример. Обратимся к примеру сокращенного русского языка из букв S_1=и, S_2=м, S_3=о, S_4=т и S_5=пробел, рассмотренному ☞ ЗДЕСЬ. Сделаем сначала «привязку» к только что введенным обозначениям:

P_1=0.219,\ P_2=0.104,\ P_3= 0.295,\ P_4=0.148, \ P_5=0.234 \ .

Матрица условных вероятностей:

\mathfrak P=\left[P_{jk}\right]_{j,k=1}^5 = \left( \begin{array}{ccccc} 0.170 & 0.130 & 0.144 & 0.065 & 0.491 \\ 0.259 & 0.029 & 0.231 & 0.111 & 0.370 \\ 0.204 & 0.116 & 0.268 & 0.206 & 0.206 \\ 0.161 & 0.077 & 0.523 & 0.052 & 0.187 \\ 0.304 & 0.113 & 0.356 & 0.227 & 0 \end{array} \right)

Вычисляем матрицу

\tilde \mathfrak P=\left[P_{jk} \log_2 P_{jk} \right]_{j,k=1}^5 = \left( \begin{array}{ccccc} -0.435 & -0.383 & -0.403 & -0.256 & -0.504 \\ -0.505 & -0.148 & -0.488 & -0.352 & -0.530 \\ -0.467 & -0.360 & -0.509 & -0.470 & -0.470 \\ -0.424 & -0.285 & -0.489 & -0.222 & -0.452 \\ -0.522 & -0.355 & -0.530 & -0.486 & 0 \end{array} \right) \ .

Величины энтропий (в битах):

H_0=\log_2 5 \approx 2.322,\ H_1=-\sum_{j=1}^5 P_j \log_2 P_j \approx 2.237,
H_2 = - (P_1,P_2,P_3,P_4,P_5) \tilde \mathfrak P \left( \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} \right) \approx 2.036 \ .

Продолжаем дальнейшее продвижение в намеченном направлении. Если учесть информацию о двух предыдущих буквах текста, то для средней информации на одну букву получается формула:

H_3=H_{A_1A_2}(A_3)=- \sum_{j,\ell,r=1}^n P([S_j,S_{\ell},S_r]) \log_2 P_{[S_j,S_{\ell}]}(S_r) \ ,

где P([S_j,S_{\ell},S_r]) — вероятность трехбуквенного сочетания (триграммы) [S_j,S_{\ell},S_r], а P_{[S_j,S_{\ell}]}(S_r) — условная вероятность появления буквы S_r после появления биграммы [S_j,S_{\ell}].

Нетрудно понять как строятся величины H_M при M> 3. Также понятно, что с возрастанием M_{} величины H_M будут убывать, приближаясь к некоторому предельному значению H_{\infty}, которое и можно считать теоретическим значением средней удельной информации при передаче длинного текста.

Значения H_{M} (в битах) для русского5) и английского языков6):

M 0_{} 1_{} 2_{} 3_{}
русский 5.000 4.348 3.521 3.006
английский 4.754 4.029 3.319 3.099

Учтя также и статистические данные о частотах появления различных слов в английском языке, Шеннон сумел приблизительно оценить и значения величин H_5 и H_8:

H_{5} \approx 2.1,\ H_{8} \approx 1.9 \ .
П

Пример [обезьяна за клавиатурой]. Известна теорема о бесконечных обезьянах: абстрактная обезьяна, ударяя случайным образом по клавишам печатной машинки7) в течение неограниченно долгого времени, рано или поздно напечатает любой наперёд заданный текст (например «Войны и мира»). В указанной ссылке приводятся оценки времени наступления этого события. Следующие примеры8) показывают, что может произойти, если обезьяна будет бить по клавиатуре специально сконструированной машинки, в которой клавиши соответствуют биграммам, триграммам и т.п. русского языка и при этом размеры клавиш пропорциональны частотам встречаемости в русском языке (а обезьяна будет чаще ударять по большим клавишам).

Приближения нулевого порядка (символы независимы и равновероятны):

ФЮНАЩРЪФЬНШЦЖЫКАПМЪНИФПЩМНЖЮЧГПМ ЮЮВСТШЖЕЩЭЮКЯПЛЧНЦШФОМЕЦЕЭДФБКТТР МЮЕТ

Приближение первого порядка (символы независимы, но с частотами, свойственными русскому языку):

ИВЯЫДТАОАДПИ САНЫАЦУЯСДУДЯЪЛЛЯ Л ПРЕЬЕ БАЕОВД ХНЕ АОЛЕТЛС И

Приближение второго порядка (частотность диграмм такая же как в русском языке):

ОТЕ ДОСТОРО ННЕДИЯРИТРКИЯ ПРНОПРОСЕБЫ НРЕТ ОСКАЛАСИВИ ОМ Р ВШЕРГУ П

Приближение третьего порядка (частотности триграмм такая же как в русском языке):

С ВОЗДРУНИТЕЛЫБКОТОРОЧЕНЯЛ МЕСЛОСТОЧЕМ МИ ДО

Вместо того, чтобы продолжить процесс приближения с помощью тетраграмм, пентаграмм и т.д., легче и лучше сразу перейти к словарным единицам. Приближение первого порядка на уровне слов9): cлова выбираются независимо, но с соответствующими им частотами.

СВОБОДНОЙ ДУШЕ ПРОТЯНУЛ КАК ГОВОРИТ ВСПОМНИТЬ МИЛОСТЬ КОМНАТАМ РАССКАЗА ЖЕНЩИНЫ МНЕ ТУДА ПОНЮХАВШЕГО КОНЦУ ИСКУСНО КАЖДОМУ РЯСАХ К ДРУГ ПЕРЕРЕЗАЛО ВИДНО ВСЕМ НАЧИНАЕТЕ НАД ДВУХ ЭТО СВЕТА ХОДУНОМ ЗЕЛЕНАЯ МУХА ЗВУК ОН БЫ ШЕЮ УТЕР БЕЗДАРНЫХ

Приближение второго порядка на уровне слов. Переходные вероятности от слова к слову соответствуют русскому языку, но «более дальние» зависимости не учитываются:

ОБЩЕСТВО ИМЕЛО ВЫРАЖЕНИЕ МГНОВЕННОГО ОРУДИЯ К ДОСТИЖЕНИЮ ДОЛЖНОСТЕЙ ОДИН В РАСЧЕТЫ НА БЕЗНРАВСТВЕННОСТИ В ПОЭЗИИ РЕЗВИТЬСЯ ВСЕ ГРЫЗЕТ СВОИ БРАЗДЫ ПРАВЛЕНИЯ НАЧАЛА ЕГО ПОШЛОЙ

С каждым проделанным шагом сходство с обычным текстом заметно возрастает. До текста «Войны и мира» осталось совсем немного… ;-)

Уменьшение информационной нагрузки на один символ алфавита вследствие неравновероятности, а также взаимозависимости появления, символов называют избыточностью языка10). Информационная избыточность рассчитывается по формуле

R_{}= \frac{H_0-H_{\infty}}{H_0}=1-\frac{H_{\infty}}{\log n} .

Величина H_0-H_{\infty} называется недогруженностью алфавита, а отношение H_{\infty}/H_0 = H_{\infty}/\log n — коэффициентом его оптимальности. Равенство избыточности величине 1/L_{} огрубленно эквивалентно утверждению о том, что каждая L_{}-я буква алфавита является «лишней», однозначно восстанавливаемой по (L-1)-й предыдущей. Избыточность наиболее распространенных европейских языков близка к 1/2, т.е., огрубляя, можно утверждать, что в тексте на одном из этих языков можно исключить до 50 % букв с тем, чтобы затем восстановить содержание текста по его оставшейся части.

§

Как определить величину H_M и оценить H_{\infty} ? Для малых значений M_{} еще можно произвести частотный анализ, но вот уже для определения H_9 требуется знание вероятностей 32^9 \approx 3.5 \cdot 10^{13} всех девятибуквенных комбинаций. Шеннон предложил для оценки H_M использовать экспертное оценивание ☞ см. ЗДЕСЬ.

§

Явление избыточности влечет за собой как отрицательные, так и положительные последствия. Отрицательные последствия вызваны тем, что наличие «лишних» символов увеличивает затраты ресурсов при коммуникации. Положительный аспект избыточности заключается в повышении помехоустойчивости процесса коммуникации. Наличие высокой избыточности естественных языков позволяет понимать речь при значительных дефектах произношения, смене диалектов, а тексты — при лингвистических ошибках, сокращении слов и плохом почерке. См. также по этому поводу феномены Глокой куздры и Пушистых браздов.

Код Шеннона - Фано

§

Для понимания материалов настоящего пункта крайне желательно ознакомиться с материалами пункта ☞ ПРЕФИКСНЫЕ КОДЫ.

Для решения задачи наиболее экономичного кодирования приходится расширять алфавит. Поясню эту фразу. Если считать, что «исходный» алфавит состоит из символов S_1,\dots,S_{n}, то рассуждения из начала предыдущего пункта показывают, что уже переход к алфавиту, состоящему из набора биграмм \{[S_j,S_{\ell}]\}_{j,\ell=1}^n с последующим кодированием двоичным кодом может существенно снизить «стоимость» кодирования текста. А соображения предыдущего пункта позволят еще больше сэкономить — но, правда, при наличии дополнительной информации о новом алфавите — информации о частоте встречаемости каждой из биграмм в кодируемом тексте. Требование равномерности кода (одинакового количества разрядов в кодовых словах) снимается и в кодовую таблицу допускаются кодовые наборы с варьируемым количеством разрядов. Основным принципом кодирования становится:

чаще встречаемость - короче кодовая последовательность.

Реализация последнего принципа возможна различными способами. Исторически первым является кодирование по методу Шеннона-Фано. Чтобы не вводить новых обозначений, будем считать что алфавит состоит из «букв» S_1,\dots,S_{n}, при этом каждая «буква» может быть произвольным символом или набором символов, например: S_1 = в , S_2= о с , S_3 = 210 Д, S_4 = शब्द , S_5=\sqrt[3]{\int_{3}^{-5} \sin x^{2y} d\, x},… лишь бы только алфавит был «полон» («покрывал» весь текст) и не «переполнен» (включенные в него символы реально в тексте присутствовали). И главное требование: частоты встречаемости «букв» в тексте должны быть нам известны. Для кодирования этих «букв» бинарным кодом ранжируем «буквы» по частоте встречаемости и разбиваем алфавит \{S_1,S_2,\dots,S_n \} на два подмножества, по возможности, равной вероятности. «Буквам» из одного подмножества ставим в соответствие 0_{}, из второго — 1_{}. Это — первые разряды соответствующих кодовых последовательностей. Далее процесс повторяется для каждого из подмножеств — производится деление их на подмножества по возможности равной вероятности с последующим присвоением им номера 0_{} или 1_{}. Процесс заканчивается когда в каждом из образовавшихся подмножеств не останется ровно по одной «букве». В результате каждая из них получает свой индивидуальный бинарный «номер» — то есть, кодировку.

П

Пример. Рассмотрим пример с кодированием 10_{} букв русского алфавита с частотами, полученными на основании искусственного текста, созданного ☞ ЗДЕСЬ.

е и а в д к з б г ж всего
количество 236 231 195 111 94 94 46 42 40 30 1119
вероятность 0.211 0.206 0.174 0.099 0.084 0.084 0.041 0.038 0.036 0.027

Множество этих букв разобьем на два подмножества, (примерно) одинаковые по вероятности. Например, суммарная вероятность букв е, и, д равна 0.51. Так что два образуемых подмножества: \{ е, и, д \} и \{ а, б, г, в, ж, к, з \}. Каждое из этих подмножеств снова разобьем на два подмножества (примерно) одинаковые по вероятности. Первое подмножество делится плохо, но что поделать — делим как получится! Продолжаем процесс деления пока не дойдем в таких разбиениях до отдельных букв. Последовательность построения схемы разбиения приведена на рисунке.

Оформляем эту схему в виде дерева и, идя от корня к листьям, нумеруем ветви после каждого узла (точки ветвления): верхней даем номер 0_{}, а нижней — номер 1_{}.

Результатом оказывается кодовая таблица

е и д а б г в ж к з
00 010 011 100 1010 1011 1100 1101 1110 1111

Стоимость кодирования текста по такой таблице равна

236\cdot 2+231\cdot 3+94 \cdot 3+195 \cdot 3+42 \cdot 4+40 \cdot 4+111 \cdot 4+30 \cdot 4+94 \cdot 4+46 \cdot 4=3423 бит,

то есть, в среднем, 3.11_{} бит на букву. Это неплохое достижение, но оно всё-таки хуже полученного использованием кода Хаффмана, также основанного на частотном анализе букв алфавита.

§

Сходство кода Шеннона-Фано с кодом Хаффмана проявляется и в алгоритмах построения обоих кодов, только направление построения кодового дерева меняется на противоположное: от корня к листьям. Так же как и код Хаффмана, код Шеннона-Фано относится к префиксным кодам: ни одно его кодовое слово не совпадает с начальным отрезком какого-то другого кодового слова. И при всех при этих сходствах, код Шеннона-Фано менее экономичен, чем код Хаффмана и поэтому практически не используется.

§

Алгоритм построения кода Шеннона-Фано основан на решении задачи из раздела computer science, известной как partition problem: для заданного конечного набора \mathbb S чисел11) требуется найти такое разбиение его на два набора \mathbb S_1 и \mathbb S_2, чтобы разность между суммами чисел составляющих наборов была минимальной. Проблема известна как NP-сложная.

А теперь перейдем к фундаментальному результату теории кодирования, связав код Шеннона-Фано с понятием энтропии.

Т

Теорема [Шеннон]. Сообщение из большого количества N_{} букв алфавита \{S_1,\dots,S_n\}, частоты встречаемости которых в сообщении заданы таблицей:

\begin{array}{l|l|l|l} S_1 & S_2 & \dots & S_n \\ \hline P_1 & P_2 & \dots & P_n \end{array} \quad при \quad P_1+P_2+\dots+P_n=1,

всегда можно закодировать бинарным кодом таким образом, чтобы количество двоичных разрядов в кодовой последовательности было сколь угодно близким к величине

H\cdot N \quad где \quad H=-\sum_{j=1}^n P_j \log_2 P_j \ ;

но никогда не меньшим ее.

Доказательство (совершенно нестрогое: очень сильная «выжимка» из рассуждений, приведенных в [2]; которые, в свою очередь, тоже не абсолютно строги). Пусть источник сообщений случайным образом генерирует символы из алфавита \{S_1,\dots,S_n\}. Пусть передаваемое сообщение состоит из достаточно большого числа N_{} символов. Рассмотрим подмножество \mathbb S всевозможных сообщений длины N_{}, в которых количества вхождений символов \{ S_j \}_{j=1}^n примерно соответствуют указанным вероятностям. Именно, если N_j — количество вхождений символа S_j, то N_j/N \approx P_j. Тогда вероятность вхождения в сообщение всех символов S_{j} в количестве N_{j} при j\in \{1,\dots,n\}, в соответствии с теоремой об умножении вероятностей, равна

P_1^{N_1} P_2^{N_2}\times \dots \times P_n^{N_n} \approx P_1^{N\, P_1} P_2^{N\,P_2}\times \dots \times P_n^{N\,P_n}=\underbrace{\left(P_1^{P_1}P_2^{P_2} \times \dots \times P_n^{P_n} \right)^N}_{=Q} \ .
§

Строго говоря, здесь надо сослаться на закон больших чисел, но пока не буду с этим заморачиваться.

Будем для простоты считать, что это — вероятность любого сообщения из подмножества \mathbb S_{}, т.е. количество элементов во множестве \mathbb S_{} примерно совпадает с 1/Q:

\mathfrak N = \operatorname{Card} (\mathbb S) \approx 1/Q \ .

Сколько стоит найти один-единственный элемент этого множества: как найти во множестве \mathbb S какое-то конкретное сообщение — не просто состоящее из нужных букв в требуемом количестве — но, например, определяющее осмысленный текст? В соответствии с теоремой Хартли, это число

\approx \log_2 \mathfrak N \approx - N \cdot \left(P_1 \log_2 P_1+P_2 \log_2 P_2+\dots+ P_n \log_2 P_n \right) бит.

Теперь обсудим полученный результат. Итак, «на входе» имеем документ — самый произвольный, содержащий возможно осмысленный, но не обязательно нам понятный текст (он записан на неизвестном языке, содержит специфические символы из неизвестной нам научной отрасли и т.п.). Наша цель — закодировать его бинарным кодом, с тем, чтобы иметь возможность передать по каналу связи. Первое, что мы делаем — строим алфавит. Слово «алфавит» понимается в том смысле, что упомянут в начале пункта. Пытаемся, по-возможности, определять часто повторяющиеся блоки — их будем включать в состав алфавита целиком, как отдельные «буквы». Стоп. Стоп! — Что же получается: для каждого документа — делать свой отдельный алфавит?! :-O — Вообще говоря, да12). Другое дело, что если этот документ не единствен, а предполагается коммуникация целой серии документов, и эти документы написаны на одном языке, и в них содержится разве лишь строго ограниченное количество специальных символов,… — и вот при всех при этих обстоятельствах имеет смысл предварительным анализом составить алфавит общий для всех документов. После того как алфавит создан, вычисляем частоты вхождений составляющих его букв в исходный документ. Кодируем по методу Шеннона-Фано. Кодовую таблицу храним в надежном файле и передаем адресату (на бумажном (электронном) носителе при личной встрече, курьером, по электронной почте и т.п.). И что у нас имеется для оценки стоимости кодирования нашего документа? — Оценка снизу для количества бит на букву: H_{}. Что такое H_{}? — Энтропия случайного события, состоящего в появлении в тексте букв алфавита при известных их вероятностях (т.е. как если бы случайный источник генерировал буквы алфавита независимо друг от друга, но с частотами, примерно соответствующими их вероятностям). Хорошо подобрали алфавит, каждый документ — достаточно длинный, этих документов много — тогда, в среднем, результаты нашего кодирования не должны слишком уж сильно превосходить этой величины. Сколько это: «слишком сильно»? — Решает заказчик. Если ему хочется улучшить результат — придется увеличивать алфавит. Но тогда решение одной проблемы приведет к появлению другой…

П

Пример. Обратимся к рассмотренному ☞ ЗДЕСЬ примеру сокращенного русского языка

и м о т пробел
P_{} 0.219 0.104 0.295 0.148 0.234

Для алфавита, состоящего из этих букв, с указанными в таблице вероятностями величина энтропии H \approx 2.237. Следовательно, кодирование приведенного ЗДЕСЬ текста из 1050 букв по теореме Шеннона оценивается в 2349 двоичных разряда. Код Шеннона-Фано для этого алфавита имеет вид

и м о т пробел
11 010 10 011 00

и точная стоимость кодирования — 2364 разряда.

Если же перейти к алфавиту, составленному из биграмм

ии им ио ит и_ ми мм мо мт м_ ои ом оо от о_ ти тм то тт т_
\hat P 0.037 0.028 0.031 0.014 0.108 0.027 0.003 0.024 0.011 0.038 0.060 0.034 0.079 0.061 0.061 0.024 0.011 0.077 0.008 0.028
_o __
\hat P 0.071 0.027 0.084 0.053 0.000

то код Хаффмана этого алфавита (уже из 25_{} «букв») имеет вид

ии им ио ит и_ ми мм мо мт м_ ои ом оо от о_ ти тм то тт т_
11000 10001 10100 010001 000 01101 0010100 00100 010000 11001 0101 10101 1110 0111 1001 01001 001011 1101 0010101 10000
_o
1011 01100 1111 0011

и стоимость кодирования текста, разбитого на 525 биграмм по схеме

Ои | то | ми | и_ | о_ | им | и_ | оо | ои | тм | и_ | о_ | о_ | о_ | оо | ии | им | то | ми | им | от | ои | м_ |

будет равна 2193 бит. Величина энтропии H \approx 2.036 бит и теорема Шеннона дает оценку в 2138 двоичных разрядов.

Пропускная способность канала связи

Рассуждения предыдущего пункта относились к случаю, когда процесс коммуникации происходит без искажений. Обратимся теперь от теории к реальности: помехи всегда будут.

Предполагаем, что по каналу связи передается последовательность бит (т.е. 0_{} или 1_{}), задающая символы (или буквы некоторого алфавита) S_{1},\dots, S_n. Предполагается, что символ S_j представлен набором из t_{j} двоичных сигналов. На передачу по каналу связи каждого информационного двоичного сигнала тратится некоторая единица времени. Исходя из этого будем говорить о сигнале S_j как имеющем длительность t_{j}.

П

Пример. Шеннон рассматривает пример из телеграфии, где имеется всего 4_{} «символа алфавита»:

  • точка, создаваемая замыканием линии на 1_{} единицу времени и последующим размыканием на 1_{} единицу времени;
  • тире, создаваемая замыканием на 3_{} единицы времени и последующим размыканием на 1_{} единицу;
  • пробел между буквами13), создаваемый размыканием линии на 3_{} единицы времени;
  • пробел между словами, создаваемый размыканием линии на 6_{} единиц времени.

Если заменить слова «замыкание линии» на 1_{}, а «размыкание линии» — на 0_{}, то получим двоичную кодировку алфавита

\mathfrak C ( точка )=10, \mathfrak C ( тире )=1110, \mathfrak C ( пробел между буквами )=000,

\mathfrak C ( пробел между словами )=000000.
Таким образом, используя в качестве вспомогательного алфавита для передачи латинских букв азбуку Морзе, получаем кодировку сообщения:

SOS = ••• − − − ••• = 101010000111011101110000101010000000

Дополнительно вводятся ограничения на допустимые к передаче последовательности — например, запрет двух пробелов подряд между словами.

Пропускная способность канала связи без помех задается формулой

C=\lim_{T\to \infty} \frac{\log_2 N(T)}{T} \ .

Здесь N(T) — число сигналов длительности T_{}. Очевидно, что N(T)\le 2^T. Пусть все символы алфавита S_1,\dots,S_n допустимы и имеют длительности t_1,\dots,t_n. Если N(t) число сигналов длительности t_{}, то справедлива следующая формула:

N(t)=N(t-t_1)+N(t-t_2)+\dots+N(t-t_n) \ .

Последняя формула представляет тот очевидный факт, что концом любого сигнала длительности t_{} должен быть один из символов множества \{S_{j}\}_{j=1}^n (или набор этих символов).

Эта формула определяет линейное разностное уравнение порядка

\tau= \max_{j\in \{1,\dots,n\}} t_j \ .

Его общее решение может быть явно выражено через корни уравнения

1= \lambda^{-t_1}+\lambda^{-t_2}+\dots+\lambda^{-t_n} \ .

Это уравнение — домножением на \lambda^{\tau} — может быть преобразовано в характеристический полином разностного уравнения. Предположив, для простоты рассуждений, что все корни этого полинома \lambda_1,\dots,\lambda_{\tau} различны, получим общее решение разностного уравнения в виде

N(t)=C_1\lambda_1^t+C_2\lambda_2^t+\dots+C_{\tau}\lambda_{\tau}^t

при величинах C_1,C_2,\dots,C_{\tau}, не зависящих от t_{}. Тогда если через \lambda_{\ast} обозначить максимальный по модулю корень полинома:

| \lambda_{\ast} | =\max_{j\in\{1,\dots,\tau\}} | \lambda_j | \ ,

то

\lim_{T\to \infty} \frac{\log_2 N(T)}{T} = \lim_{T\to \infty} \frac{\log_2 C_{\ast} \lambda_{\ast}^T }{T} = \log_2 \lambda_{\ast} \ .
§

Тут надо бы проверить несколько предположений, например, что максимальный по модулю корень характеристического полинома единствен — тогда, хотя бы, он обязательно будет веществен. Пока могу с определенностью утверждать, что при n\ge 2 у этого полинома все корни по модулю не превосходят 2_{} (см. ☞ теорему Маклорена ),что существует единственный положительный вещественный корень (см. ☞ правило знаков Декарта ), и что этот корень лежит в интервале ]1,2[. Еще одно преположение, нуждающееся в обосновании: коэффициент C_{\ast} не должен равняться нулю,… Но поскольку сам Шеннон не заморачивался такими мелочами, то и я пока не буду.

П

Пример. Для рассмотренного выше «телеграфного» примера имеем разностное уравнение в виде

N(t)=N(t-2)+N(t-4)+N(t-5)+N(t-7)+N(t-8)+N(t-10) \ .

Это уравнение имеет порядок 10_{}, его характеристический полином

\lambda^{10}=\lambda^{8}+\lambda^{6}+\lambda^{5}+\lambda^{3}+\lambda^{2}+1

имеет максимальный по модулю корень \lambda_{\ast} \approx 1.453. Таким образом, пропускная способность канала равна \approx 0.539.

Пусть символы алфавита имеют вероятности появления в любом месте сообщения, заданные таблицей

\begin{array}{l|l|l|l} S_1 & S_2 & \dots & S_n \\ \hline P_1 & P_2 & \dots & P_n \end{array} \quad при \quad P_1+P_2+\dots+P_n=1.

Тогда при отсутствии помех сообщение по линии связи может быть передано со скоростью сколь угодно близкой к

v=C/H \quad букв / единица времени ,

где C_{} — пропускная способность линии связи, а H=-\sum_{j=1}^n P_j \log_2 P_i — энтропия одной буквы передаваемого сообщения; однако скорость передачи, превосходящая v_{} никогда не может быть достигнута.

При наличии помех в линии связи дело будет обстоять иначе. В этом случае только наличие избыточности в передаваемой последовательности сигналов может помочь нам точно восстановить переданное сообщение по принятым данным. Ясно, что использование кода, приводящего к наименьшей избыточности закодированного сообщения здесь уже нецелесообразно и скорость передачи сообщения должна быть уменьшена. Насколько уменьшена?

Для ответа на этот вопрос придется предварительно описать линию связи с помехами. Пусть линия связи использует m_{} различных элементраных сигналов A_1,A_2,\dots,A_m, но из-за наличия помех переданный сигнал A_j может оказаться по выходе из канала каким-то другим сигналом A_k; пусть известна вероятность этого события \hat P_{jk}^{}. Из этих вероятностей можно составить квадратную матрицу

\hat \mathfrak P = \left( \begin{array}{llll} \hat P_{11} & \hat P_{12} & \dots & \hat P_{1m} \\ \hat P_{21} & \hat P_{22} & \dots & \hat P_{2m} \\ \dots & & & \dots \\ \hat P_{m1} & \hat P_{m2} & \dots & \hat P_{mm} \end{array} \right)

Предположим, для простоты, что по линии связи передается два элементарных сигнала — A_1=0 и A_{2}=1 (и на выходе канала связи других сигналов быть не может). Предположим, что вероятность безошибочного приема любого из передаваемых сигналов равна 1-p_{}, а вероятность ошибки равна p_{}. Можно составить матрицу переходных вероятностей:

\begin{array}{l} \\ A_1 \\ A_2 \end{array} \begin{array}{l} \begin{array}{llll} & & A_{1} & A_{2} \end{array} \\ \left(\begin{array}{cc} 1-p & p \\ p & 1-p \end{array} \right) \end{array}

Пусть P(A_{j}) — вероятность того, что передаваемым сигналом является A_{j}, имеем: P(A_1)+P(A_2)=1. Опыт B_{}, заключающийся в выяснении того, какой сигнал передается, будет иметь энтропию

H(B)=-P(A_{1}) \log P(A_1) - P(A_2) \log P(A_{2}) \ .

Опыт A_{}, заключающийся в выяснении того, какой именно сигнал при этом будет принят на выходе, является опытом с двумя исходами, зависящими от опыта B_{}. Условные энтропии

H_{A_1}(B)=-(1-p) \log (1-p)-p \log p,\quad H_{A_2}(B)=-p \log p - (1-p) \log (1-p)

оказываются одинаковыми и

H_{A}(B)=P(A_1) H_{A_1}(B) + P(A_2) H_{A_2}(B)=-(1-p) \log (1-p)-p \log p_{}

независимо от величин вероятностей P(A_{1}), P(A_{2}).










Статья не закончена!

Источники

[1]. Шеннон К. Математическая теория связи. (Shannon C.E. A Mathematical Theory of Communication. Bell System Technical Journal. — 1948. — Т. 27. — С. 379-423, 623–656.)

[2]. Яглом А.М., Яглом И.М. Вероятность и информация. М. Наука. 1973.

.

1) В оригинале — plausibility.
2) Они — то есть сами цифры 0,1 — также называются битами; но чтобы не путаться с шенноновским определением энтропии, я в этом разделе буду использовать для них название разряды.
3) С возвращением карточки в ящик каждый раз после выемки.
4) Если только Вы не пытаетесь переводить с эстонского 8-)
5) 32 буквы с учетом пробелов, e=ё, ъ=ь.
6) 27 букв с учетом пробелов.
7) Так — в классической постановке. Сейчас следует читать клавиатуре компьютера.
8) Данные взяты из комментариев редактора перевода статьи Шеннона [1].
9) Гипотетическая пишушая машинка имеет теперь на клавиатуре целиком слова, обезьяна по ним бьющая, увеличивается до размеров Кинг Конга.
10) Redundancy (англ.)
11) Обычно считают \mathbb S \subset \mathbb N, но это требование не очень существенно; также не существенно требование различности чисел в наборе.
12) И, более того, нужно обеспечить передачу кодовой таблицы адресату!
13) Здесь буква понимается в обычном смысле, как буква русского или, в версии Шеннона, латинского алфавита.

2018/09/20 09:26