УказательРазделыОбозначенияАвторО проекте


Вспомогательная страница к разделу ОПРЕДЕЛИТЕЛЬ. Складирую здесь

Некоторые целочисленные определители

Определитель Смита

\det [\operatorname{HOD} (j,k)]_{j,k=1}^n = \prod_{\ell=1}^n \phi(\ell) = n! \left( \frac{1}{2} \right)^{\lfloor n/2 \rfloor} \left( \frac{2}{3} \right)^{\lfloor n/3 \rfloor}\left( \frac{4}{5} \right)^{\lfloor n/5 \rfloor}\left( \frac{6}{7} \right)^{\lfloor n/7 \rfloor}\left( \frac{10}{11} \right)^{\lfloor n/11 \rfloor} \times \dots \ .

Здесь \operatorname{HOD}наибольший общий делитель, \phiфункция Эйлера, \lfloor \rfloorцелая часть числа, а знаменатели дробей 2,3,5,7,11,\dots представляют собою последовательные простые числа.

П

Пример.

\left| \begin{array}{cccccccc} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 \\ 1 & 1 & 3 & 1 & 1 & 3 & 1 & 1 \\ 1 & 2 & 1 & 4 & 1 & 2 & 1 & 4 \\ 1 & 1 & 1 & 1 & 5 & 1 & 1 & 1 \\ 1 & 2 & 3 & 2 & 1 & 6 & 1 & 2 \\ 1 & 1 & 1 & 1 & 1 & 1 & 7 & 1 \\ 1 & 2 & 1 & 4 & 1 & 2 & 1 & 8 \end{array} \right|=768= 1\cdot 1 \cdot 2 \cdot 2 \cdot 4 \cdot 2 \cdot 6 \cdot 4 \ .

Источники.
Smith S. On the value of a certain arithmetic determinant. Proc. London Math. Soc. 7, 208-212, 1876
Чезаро Э. Элементарный учебник алгебраического анализа и исчисления бесконечно малых. Часть I. М.-Л., ОНТИ, 1936, сс.34-35

2011/11/12 18:50 редактировал au